Topic: Calculus Anyone? (Page 1 of 1) |
|
---|---|
Paranoid (IV) Inmate From: |
posted 09-15-2008 20:00
Limit as b approaches t |
Paranoid (IV) Inmate From: cell 3736 |
posted 09-15-2008 22:02
I trust my old friend Mathcad with things like these :P |
Paranoid (IV) Inmate From: |
posted 09-15-2008 22:38
quote:
|
Paranoid (IV) Inmate From: cell 3736 |
posted 09-15-2008 23:35
No idea ^^ |
Paranoid (IV) Inmate From: |
posted 09-15-2008 23:53
Ok ..thanks again. |
Paranoid (IV) Inmate From: Madison, Indiana |
posted 09-16-2008 04:07 |
Paranoid (IV) Inmate From: |
posted 09-16-2008 04:24
quote:
|
Lunatic (VI) Mad Scientist From: Massachusetts, USA |
posted 09-16-2008 05:36 |
Paranoid (IV) Inmate From: |
posted 09-16-2008 05:40
quote:
|
Paranoid (IV) Inmate From: Madison, Indiana |
posted 09-16-2008 05:55
code: lim { b^4 - t^4 } b-->t ------------ { b^5 - t^5 } let t = b+h lim { b^4 - (b+h)^4 } h-->0 ---------------- { b^5 - (b+h)^5 } lim { b^4 - (b^4 + 4b^3h + 6b^2h^2 + 4bh^3 + h^4) } = h-->0 ------------------------------------------------------------------- { b^5 - (b^5 + 5b^4h + 10b^3h^2 + 10b^2h^3 + 5bh^4 + h^5) } lim { -4b^3h - 6b^2h^2 - 4bh^3 - h^4 } = h-->0 ------------------------------------------------- { -5b^4h - 10b^3h^2 - 10b^2h^3 - 5bh^4 - h^5 } lim { -h(4b^3 + 6b^2h + 4bh^1 + h^3) } = h-->0 --------------------------------------------------- { -h(5b^4 + 10b^3h + 10b^2h^2 + 5bh^3 + h^4) } lim { 4b^3 + 6b^2h + 4bh^1 + h^3 } = h-->0 ---------------------------------------------- { 5b^4 + 10b^3h + 10b^2h^2 + 5bh^3 + h^4 } as h goes to 0 all the terms wtih h drop out leaving 4b^3 = ---- 5b^4 4 = -- 5b
|
Paranoid (IV) Inmate From: |
posted 09-16-2008 13:52
Hyperbole: |
Bipolar (III) Inmate From: Cranleigh, Surrey, England |
posted 09-16-2008 19:44
Hyperbole's derivation is an approach from first principles - this is the actual definition of the limit, and where all differentiation comes from. E.g. for the general polynomial x^n: |
Paranoid (IV) Inmate From: |
posted 09-17-2008 04:53
Thanks! |
Paranoid (IV) Inmate From: Madison, Indiana |
posted 09-17-2008 17:55
When I first read your problem. with it being stated as a limit, I thought about solving the limit. I didn't think about it as a dervative until Slime pointed out the use of L'Hopital's rule. code: F'(x) = lim(h-->0) (F(x+h) - F(x)) / h
|
Bipolar (III) Inmate From: Cranleigh, Surrey, England |
posted 09-22-2008 02:17
Hehe, if you think that's a pain, consider this: Newton produced his laws of planetary motion without calculus |